Abstract
AbstractEscherichia coli lineage ST131 is an important cause of urinary tract and bloodstream infections worldwide and is highly resistant to antimicrobials. Specific ST131 lineages carrying invasiveness-associated papGII pathogenicity islands (PAIs) were previously described, but it is unknown how invasiveness relates to the acquisition of antimicrobial resistance (AMR). In this study, we analysed 1638 ST131 genomes and found that papGII+ isolates carry significantly more AMR genes than papGII-negative isolates, suggesting a convergence of virulence and AMR. The prevalence of papGII+ isolates among human clinical ST131 isolates increased dramatically since 2005, accounting for half of the recent E. coli bloodstream isolates. Emerging papGII+ lineages within clade C2 were characterized by a chromosomally integrated blaCTX-M-15 and the loss and replacement of F2:A1:B- plasmids. Convergence of virulence and AMR is worrying, and further dissemination of papGII+ ST131 lineages may lead to a rise in severe and difficult-to-treat extraintestinal infections.
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)