Abstract
AbstractCancer cell genomes change continuously due to mutations, and mutational processes change over time in patients, leaving dynamic signatures in the accumulated genomic variation in tumors. Many computational methods detect the relative activities of known mutation signatures. However, these methods may produce erroneous signatures when applied to individual branches in cancer cell phylogenies. Here, we show that the inference of branch-specific mutational signatures can be improved through a joint analysis of the collections of mutations mapped on proximal branches of the cancer cell phylogeny. This approach reduces the false-positive discovery rate of branch-specific signatures and can sometimes detect faint signatures. An analysis of empirical data from 61 lung cancer patients supports trends based on computer-simulated datasets for which the correct signatures are known. In lung cancer somatic variation, we detect a decreasing trend of smoking-related mutational processes over time and an increasing influence of APOBEC mutational processes as the tumor evolution progresses. These analyses also reveal patterns of conservation and divergence of mutational processes in cell lineages within patients.
Funder
U.S. Department of Health & Human Services | National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献