Disrupting iron homeostasis can potentiate colistin activity and overcome colistin resistance mechanisms in Gram-Negative Bacteria

Author:

Gadar Kavita,de Dios RubénORCID,Kadeřábková NikolORCID,Prescott Thomas A. K.,Mavridou Despoina A. I.ORCID,McCarthy Ronan R.ORCID

Abstract

AbstractAcinetobacter baumannii is a Gram-negative priority pathogen that can readily overcome antibiotic treatment through a range of intrinsic and acquired resistance mechanisms. Treatment of carbapenem-resistant A. baumannii largely relies on the use of colistin in cases where other treatment options have been exhausted. However, the emergence of resistance against this last-line drug has significantly increased amongst clinical strains. In this study, we identify the phytochemical kaempferol as a potentiator of colistin activity. When administered singularly, kaempferol has no effect on growth but does impact biofilm formation. Nonetheless, co-administration of kaempferol with sub-inhibitory concentrations of colistin exposes bacteria to a metabolic Achilles heel, whereby kaempferol-induced dysregulation of iron homeostasis leads to bacterial killing. We demonstrate that this effect is due to the disruption of Fenton’s reaction, and therefore to a lethal build-up of toxic reactive oxygen species in the cell. Furthermore, we show that this vulnerability can be exploited to overcome both intrinsic and acquired colistin resistance in clinical strains of A. baumannii and E. coli in vitro and in the Galleria mellonella model of infection. Overall, our findings provide a proof-of-principle demonstration that targeting iron homeostasis is a promising strategy for enhancing the efficacy of colistin and overcoming colistin-resistant infections.

Funder

RCUK | Biotechnology and Biological Sciences Research Council

Academy of Medical Sciences

U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3