Identifying and profiling structural similarities between Spike of SARS-CoV-2 and other viral or host proteins with Machaon

Author:

Kakoulidis PanosORCID,Vlachos Ioannis S.,Thanos Dimitris,Blatch Gregory L.,Emiris Ioannis Z.,Anastasiadou EmaORCID

Abstract

AbstractUsing protein structure to predict function, interactions, and evolutionary history is still an open challenge, with existing approaches relying extensively on protein homology and families. Here, we present Machaon, a data-driven method combining orientation invariant metrics on phi-psi angles, inter-residue contacts and surface complexity. It can be readily applied on whole structures or segments—such as domains and binding sites. Machaon was applied on SARS-CoV-2 Spike monomers of native, Delta and Omicron variants and identified correlations with a wide range of viral proteins from close to distant taxonomy ranks, as well as host proteins, such as ACE2 receptor. Machaon’s meta-analysis of the results highlights structural, chemical and transcriptional similarities between the Spike monomer and human proteins, indicating a multi-level viral mimicry. This extended analysis also revealed relationships of the Spike protein with biological processes such as ubiquitination and angiogenesis and highlighted different patterns in virus attachment among the studied variants. Available at: https://machaonweb.com.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3