Integrative, segregative, and degenerate harmonics of the structural connectome

Author:

Sipes Benjamin S.ORCID,Nagarajan Srikantan S.,Raj Ashish

Abstract

AbstractUnifying integration and segregation in the brain has been a fundamental puzzle in neuroscience ever since the conception of the “binding problem.” Here, we introduce a framework that places integration and segregation within a continuum based on a fundamental property of the brain–its structural connectivity graph Laplacian harmonics and a new feature we term the gap-spectrum. This framework organizes harmonics into three regimes–integrative, segregative, and degenerate–that together account for various group-level properties. Integrative and segregative harmonics occupy the ends of the continuum, and they share properties such as reproducibility across individuals, stability to perturbation, and involve “bottom-up” sensory networks. Degenerate harmonics are in the middle of the continuum, and they are subject-specific, flexible, and involve “top-down” networks. The proposed framework accommodates inter-subject variation, sensitivity to changes, and structure-function coupling in ways that offer promising avenues for studying cognition and consciousness in the brain.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3