Abstract
AbstractLoss of podocytes is a common feature of diabetic renal injury and a key contributor to the development of albuminuria. We found that podocyte Rho associated coiled-coil containing protein kinase 2 (ROCK2) is activated in rodent models and patients with diabetes. Mice that lacked ROCK2 only in podocytes (PR2KO) were resistant to albuminuria, glomerular fibrosis, and podocyte loss in multiple animal models of diabetes (i.e., streptozotocin injection, db/db, and high-fat diet feeding). RNA-sequencing of ROCK2-null podocytes provided initial evidence suggesting ROCK2 as a regulator of cellular metabolism. In particular, ROCK2 serves as a suppressor of peroxisome proliferator-activated receptors α (PPARα), which rewires cellular programs to negatively control the transcription of genes involved in fatty acid oxidation and consequently induce podocyte apoptosis. These data establish ROCK2 as a nodal regulator of podocyte energy homeostasis and suggest this signaling pathway as a promising target for the treatment of diabetic podocytopathy.
Funder
MEXT | Japan Society for the Promotion of Science
Suzuken Memorial Foundation
Takeda Science Foundation
Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care
Uehara Memorial Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献