Tumor microenvironment remodeling plus immunotherapy could be used in mesenchymal-like tumor with high tumor residual and drug resistant rate

Author:

Shen ShuaiORCID,Liu Xing,Guo Qing,Liang Qingyu,Wu Jianqi,Guan Gefei,Zou Cunyi,Zhu Chen,Yan Zihao,Liu Tianqi,Chen Ling,Cheng PengORCID,Cheng WenORCID,Wu AnhuaORCID

Abstract

AbstractEpithelial-mesenchymal transition (EMT) is a common process during tumor progression and is always related to residual tumor, drug resistance and immune suppression. However, considering the heterogeneity in EMT process, there is still a need to establish robust EMT classification system with reasonable molecular, biological and clinical implications to investigate whether these unfavorable survival factors are common or unique in different individuals. In our work, we classify tumors with four EMT status, that is, EMTlow, EMTmid, EMThigh-NOS (Not Otherwise Specified), and EMThigh-AKT (AKT pathway overactivation) subtypes. We find that EMThigh-NOS subtype is driven by intrinsic somatic alterations. While, EMThigh-AKT subtype is maintained by extrinsic cellular interplay between tumor cells and macrophages in an AKT-dependent manner. EMThigh-AKT subtype is both unresectable and drug resistant while EMThigh-NOS subtype can be treated with cell cycle related drugs. Importantly, AKT activation in EMThigh-AKT not only enhances EMT process, but also contributes to the immunosuppressive microenvironment. By remodeling tumor immune-microenvironment by AKT inhibition, EMThigh-AKT can be treated by immune checkpoint blockade therapies. Meanwhile, we develop TumorMT website (http://tumormt.neuroscience.org.cn/) to apply this EMT classification and provide reasonable therapeutic guidance.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3