Abstract
AbstractDespite the growing epidemic worldwide, diabetes is an incurable disease. We have been focusing on why diabetes manifests refractoriness to any therapy. We recently found that abnormal bone marrow-derived cells (BMDCs), namely, Vcam-1+ST-HSCs, was a key mechanism for diabetic complications. We then hypothesize that those aberrant BMDCs sustainedly impair pancreatic β cells. Here we show that eliminating abnormal BMDCs using bone marrow transplantation results in controlling serum glucose in diabetic mice, in which normoglycemia is sustained even after cessation of insulin therapy. Alternatively, abnormal BMDCs exhibiting epigenetic alterations are treated with an HDAC inhibitor, givinostat, in diabetic mice. As a result, those mice are normoglycemic along with restored insulin secretion even following the cessation of both insulin and givinostat. Diabetic cell fusion between abnormal BMDCs and resident cells is significantly blocked by the combination therapy in the pancreatic islets and thymus while surgical ablation of the thymus completely eliminates therapeutic protection in diabetic mice. In conclusion, diabetes is an epigenetic stem cell disorder with thymic disturbances. The combination may be applied to patients aiming at complete remission from diabetes in clinical medicine.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Shiga University of Medical Science
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Reference27 articles.
1. Sun, H. et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022).
2. Garofano, A., Czernichow, P. & BrÉant, B. Impaired β-cell regeneration in perinatally malnourished rats: a study with STZ. FASEB J. 14, 2611–2617 (2000).
3. Bonner-Weir, S., Baxter, L. A., Schuppin, G. T. & Smith, F. E. A second pathway for regeneration of adult exocrine and endocrine pancreas. Diabetes 42, 1715–1720 (1993).
4. Gregg, B. E. et al. Formation of a human β-cell population within pancreatic islets is set early in life. J. Clin. Endocrinol. Metab. 97, 3197–3206 (2012).
5. Parsons, J. A., Brelje, T. C. & Sorenson, R. L. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 130, 1459–1466 (1992).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献