Neural encoding with unsupervised spiking convolutional neural network

Author:

Wang Chong,Yan HongmeiORCID,Huang Wei,Sheng Wei,Wang Yuting,Fan Yun-Shuang,Liu Tao,Zou Ting,Li RongORCID,Chen HuafuORCID

Abstract

AbstractAccurately predicting the brain responses to various stimuli poses a significant challenge in neuroscience. Despite recent breakthroughs in neural encoding using convolutional neural networks (CNNs) in fMRI studies, there remain critical gaps between the computational rules of traditional artificial neurons and real biological neurons. To address this issue, a spiking CNN (SCNN)-based framework is presented in this study to achieve neural encoding in a more biologically plausible manner. The framework utilizes unsupervised SCNN to extract visual features of image stimuli and employs a receptive field-based regression algorithm to predict fMRI responses from the SCNN features. Experimental results on handwritten characters, handwritten digits and natural images demonstrate that the proposed approach can achieve remarkably good encoding performance and can be utilized for “brain reading” tasks such as image reconstruction and identification. This work suggests that SNN can serve as a promising tool for neural encoding.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3