Abstract
AbstractDevelopment and study of cell-cultured constructs, such as tissue-engineering scaffolds or organ-on-a-chip platforms require a comprehensive, representative view on the cells inside the used materials. However, common characteristics of biomedical materials, for example, in porous, fibrous, rough-surfaced, and composite materials, can severely disturb low-energy imaging. In order to image and quantify cell structures in optically challenging samples, we combined labeling, 3D X-ray imaging, and in silico processing into a methodological pipeline. Cell-structure images were acquired by a tube-source X-ray microtomography device and compared to optical references for assessing the visual and quantitative accuracy. The spatial coverage of the X-ray imaging was demonstrated by investigating stem-cell nuclei inside clinically relevant-sized tissue-engineering scaffolds (5x13 mm) that were difficult to examine with the optical methods. Our results highlight the potential of the readily available X-ray microtomography devices that can be used to thoroughly study relative large cell-cultured samples with microscopic 3D accuracy.
Funder
Tekes
Council of the Tampere Region
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献