Abstract
AbstractSelf-complementing split fluorescent proteins (split FP1-10/11) have become an important labeling tool in live-cell protein imaging. However, current split FP systems to label multiple proteins in single cells have a fundamental limitation in the number of proteins that can be simultaneously labeled. Here, we describe an approach to expand the number of orthogonal split FP systems with spectrally distinct colors. By combining rational design and cycles of directed evolution, we expand the spectral color palette of FP1-10/11. We also circularly permutate GFP and synthesize the β-strand 7, 8, or 10 system. These split GFP pairs are not only capable of labeling proteins but are also orthogonal to the current FP1-10/11 pairs, offering multiplexed labeling of cellular proteins. Our multiplexing approach, using the new orthogonal split FP systems, demonstrates simultaneous imaging of four distinct proteins in single cells; the resulting images reveal nuclear localization of focal adhesion protein Zyxin.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献