Abstract
AbstractWe recently linked branched-chain amino acid transferase 1 (BCAT1) dysfunction with the movement disorder Parkinson’s disease (PD), and found that RNAi-mediated knockdown of neuronal bcat-1 in C. elegans causes abnormal spasm-like ‘curling’ behavior with age. Here we report the development of a machine learning-based workflow and its application to the discovery of potentially new therapeutics for PD. In addition to simplifying quantification and maintaining a low data overhead, our simple segment-train-quantify platform enables fully automated scoring of image stills upon training of a convolutional neural network. We have trained a highly reliable neural network for the detection and classification of worm postures in order to carry out high-throughput curling analysis without the need for user intervention or post-inspection. In a proof-of-concept screen of 50 FDA-approved drugs, enasidenib, ethosuximide, metformin, and nitisinone were identified as candidates for potential late-in-life intervention in PD. These findings point to the utility of our high-throughput platform for automated scoring of worm postures and in particular, the discovery of potential candidate treatments for PD.
Funder
Glenn Foundation for Medical Research
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Reference25 articles.
1. Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13 (2013).
2. Yao, V. et al. An integrative tissue-network approach to identify and test human disease genes. Nat. Biotechnol. 36, 1091 (2018).
3. Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput behavioral analysis in C. elegans. Nat. Methods 8, 592 (2011).
4. Cornaglia, M., Lehnert, T. & Gijs, M. A. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans. Lab Chip 17, 3736–3759 (2017).
5. Restif, C. et al. CeleST: computer vision software for quantitative analysis of C. elegans swim behavior reveals novel features of locomotion. PLoS Comput. Biol. 10, e1003702 (2014).
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献