Temporal structure of mouse courtship vocalizations facilitates syllable labeling

Author:

Hertz Stav,Weiner Benjamin,Perets Nisim,London MichaelORCID

Abstract

AbstractMice emit sequences of ultrasonic vocalizations (USVs) but little is known about the rules governing their temporal order and no consensus exists on the classification of USVs into syllables. To address these questions, we recorded USVs during male-female courtship and found a significant temporal structure. We labeled USVs using three popular algorithms and found that there was no one-to-one relationships between their labels. As label assignment affects the high order temporal structure, we developed the Syntax Information Score (based on information theory) to rank labeling algorithms based on how well they predict the next syllable in a sequence. Finally, we derived a novel algorithm (Syntax Information Maximization) that utilizes sequence statistics to improve the clustering of individual USVs with respect to the underlying sequence structure. Improvement in USV classification is crucial for understanding neural control of vocalization. We demonstrate that USV syntax holds valuable information towards achieving this goal.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference49 articles.

1. Sewell, G. D. Ultrasound in rodents. Nature 217, 682–683 (1968).

2. Sales, G. Ultrasound and mating behavior in rodents with some observations on other behavioral situations. J. Zool. 168, 149–164 (1972).

3. Holy, T. E. & Guo, Z. Ultrasonic songs of male mice. PLoS Biol. 3, e386 (2005).

4. Seagraves, K. M., Arthur, B. J. & Egnor, S. E. R. Evidence for an audience effect in mice: male social partners alter the male vocal response to female cues. J. Exp. Biol. 219, 1437–1448 (2016).

5. Portfors, C. V. Types and functions of ultrasonic vocalizations in laboratory rats and mice. J. Am. Assoc. Lab. Anim. Sci. 46, 28–34 (2007).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3