Abstract
AbstractRecently, advances in fluorescent in-situ hybridization techniques and in imaging technology have enabled visualization and counting of individual RNA molecules in single cells. This has greatly enhanced the resolution in our understanding of transcriptional processes. Here, we adapt a recently published smiFISH protocol (single-molecule inexpensive fluorescent in-situ hybridization) to whole embryos across a range of arthropod model species, and also to non-embryonic tissues. Using multiple fluorophores with distinct spectra and white light laser confocal imaging, we simultaneously detect and separate single RNAs from up to eight different genes in a whole embryo. We also combine smiFISH with cell membrane immunofluorescence, and present an imaging and analysis pipeline for 3D cell segmentation and single-cell RNA counting in whole blastoderm embryos. Finally, using whole embryo single-cell RNA count data, we propose two alternative single-cell variability measures to the commonly used Fano factor, and compare the capacity of these three measures to address different aspects of single-cell expression variability.
Funder
Wellcome Trust
RCUK | Biotechnology and Biological Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献