Abstract
AbstractAMPK plays significant roles in the modulation of metabolic reprogramming and viral infection. However, the detailed mechanism by which AMPK affects viral infection is unclear. The present study aims to determine how AMPK influences white spot syndrome virus (WSSV) infection in shrimp (Marsupenaeus japonicus). Here, we find that AMPK expression and phosphorylation are significantly upregulated in WSSV-infected shrimp. WSSV replication decreases remarkably after knockdown of Ampkα and the shrimp survival rate of AMPK-inhibitor injection shrimp increases significantly, suggesting that AMPK is beneficial for WSSV proliferation. Mechanistically, WSSV infection increases intracellular Ca2+ level, and activates CaMKK, which result in AMPK phosphorylation and partial nuclear translocation. AMPK directly activates mTORC2-AKT signaling pathway to phosphorylate key enzymes of glycolysis in the cytosol and promotes expression of Hif1α to mediate transcription of key glycolytic enzyme genes, both of which lead to increased glycolysis to provide energy for WSSV proliferation. Our findings reveal a novel mechanism by which WSSV exploits the host CaMKK-AMPK-mTORC2 pathway for its proliferation, and suggest that AMPK might be a target for WSSV control in shrimp aquaculture.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献