Abstract
AbstractAn organism’s ability to accurately anticipate the sensations caused by its own actions is crucial for a wide range of behavioral, perceptual, and cognitive functions. Notably, the sensorimotor expectations produced when touching one’s own body attenuate such sensations, making them feel weaker and less ticklish and rendering them easily distinguishable from potentially harmful touches of external origin. How the brain learns and keeps these action-related sensory expectations updated is unclear. Here we employ psychophysics and functional magnetic resonance imaging to pinpoint the behavioral and neural substrates of dynamic recalibration of expected temporal delays in self-touch. Our psychophysical results reveal that self-touches are less attenuated after systematic exposure to delayed self-generated touches, while responses in the contralateral somatosensory cortex that normally distinguish between delayed and nondelayed self-generated touches become indistinguishable. During the exposure, the ipsilateral anterior cerebellum shows increased activity, supporting its proposed role in recalibrating sensorimotor predictions. Moreover, responses in the cingulate areas gradually increase, suggesting that as delay adaptation progresses, the nondelayed self-touches trigger activity related to cognitive conflict. Together, our results show that sensorimotor predictions in the simplest act of touching one’s own body are upheld by a sophisticated and flexible neural mechanism that maintains them accurate in time.
Publisher
Springer Science and Business Media LLC
Reference142 articles.
1. de Lange, F. P., Heilbron, M. & Kok, P. How do expectations shape perception? Trends Cogn. Sci. 22, 764–779 (2018).
2. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).
3. Von Helmholtz, H. Handbuch Der Physiologischen Optik: Mit 213 in Den Text Eingedruckten Holzschnitten Und 11 Tafeln. Vol. 9 (Voss, 1867).
4. Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013).
5. Friston, K. A theory of cortical responses. Philos. Trans. Royal Soc. B: Biol. Sci. https://doi.org/10.1098/rstb.2005.1622 (2005).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献