C. elegans is not a robust model organism for the magnetic sense

Author:

Malkemper Erich PascalORCID,Pikulik Patrycja,Krause Tim Luca,Liu Jun,Zhang LiORCID,Hamauei Brittany,Scholz MonikaORCID

Abstract

AbstractMagnetoreception is defined as the ability to sense and use the Earth’s magnetic field, for example to orient and direct movements. The receptors and sensory mechanisms underlying behavioral responses to magnetic fields remain unclear. A previous study described magnetoreception in the nematode Caenorhabditis elegans, which requires the activity of a single pair of sensory neurons. These results suggest C. elegans as a tractable model organism for facilitating the search for magnetoreceptors and signaling pathways. The finding is controversial, however, as an attempt to replicate the experiment in a different laboratory was unsuccessful. We here independently test the magnetic sense of C. elegans, closely replicating the assays developed in the original publication. We find that C. elegans show no directional preference in magnetic fields of both natural and higher intensity, suggesting that magnetotactic behavior in the worm is not robustly evoked in a laboratory setting. Given the lack of a robust magnetic response under controlled conditions, we conclude that C. elegans is not a suitable model organism to study the mechanism of the magnetic sense.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3