Abstract
AbstractThe evolution of resistance to pesticides is a major burden in agriculture. Resistance management involves maximizing selection pressure heterogeneity, particularly by combining active ingredients with different modes of action. We tested the hypothesis that alternation may delay the build-up of resistance not only by spreading selection pressure over longer periods, but also by decreasing the rate of evolution of resistance to alternated fungicides, by applying an experimental evolution approach to the economically important crop pathogenZymoseptoria tritici. Our results show that alternation is either neutral or slows the overall resistance evolution rate, relative to continuous fungicide use, but results in higher levels of generalism in evolved lines. We demonstrate that the nature of the fungicides, and therefore their relative intrinsic risk of resistance may underly this trade-off, more so than the number of fungicides and the rhythm of alternation. This trade-off is also dynamic over the course of resistance evolution. These findings open up new possibilities for tailoring resistance management effectively while optimizing interplay between alternation components.
Funder
INRAE SPE Division (STRATAGEME Project) Syngenta Crop Protection
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献