Polyester degradation by soil bacteria: identification of conserved BHETase enzymes in Streptomyces

Author:

Verschoor Jo-AnneORCID,Croese Martijn R. J.,Lakemeier Sven E.ORCID,Mugge Annemiek,Burgers Charlotte M. C.,Innocenti Paolo,Willemse JoostORCID,Crooijmans Marjolein E.ORCID,van Wezel Gilles P.ORCID,Ram Arthur F. J.ORCID,de Winde Johannes H.ORCID

Abstract

AbstractThe rising use of plastic results in an appalling amount of waste which is scattered into the environment. One of these plastics is PET which is mainly used for bottles. We have identified and characterized an esterase from Streptomyces, annotated as LipA, which can efficiently degrade the PET-derived oligomer BHET. The Streptomyces coelicolorScLipA enzyme exhibits varying sequence similarity to several BHETase/PETase enzymes, including IsPETase, TfCut2, LCC, PET40 and PET46. Of 96 Streptomyces strains, 18% were able to degrade BHET via one of three variants of LipA, named ScLipA, S2LipA and S92LipA. SclipA was deleted from S. coelicolor resulting in reduced BHET degradation. Overexpression of all LipA variants significantly enhanced BHET degradation. All variants were expressed in E. coli for purification and biochemical analysis. The optimum conditions were determined as pH 7 and 25 °C for all variants. The activity on BHET and amorphous PET film was investigated. S2LipA efficiently degraded BHET and caused roughening and indents on the surface of PET films, comparable to the activity of previously described TfCut2 under the same conditions. The abundance of the S2LipA variant in Streptomyces suggests an environmental advantage towards the degradation of more polar substrates including these polluting plastics.

Publisher

Springer Science and Business Media LLC

Reference60 articles.

1. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

2. Verschoor, J.-A., Kusumawardhani, H., Ram, A. F. J. & de Winde, J. H. Toward microbial recycling and upcycling of plastics: prospects and challenges. Front. Microbiol. 0, 701 (2022).

3. Plastics Europe. Plastics the Facts 2023. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (2023).

4. Walker, T. R. & Fequet, L. Current trends of unsustainable plastic production and micro(nano) plastic pollution. TrAC Trends Anal. Chem. 160, 116984 (2023).

5. Bahl, S., Dolma, J., Singh, J. J. & Sehgal, S. Biodegradation of plastics: a state of the art review. Mater. Today Proc. 39, 31–34 (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3