Multi-species and multi-tissue methylation clocks for age estimation in toothed whales and dolphins
-
Published:2021-05-31
Issue:1
Volume:4
Page:
-
ISSN:2399-3642
-
Container-title:Communications Biology
-
language:en
-
Short-container-title:Commun Biol
Author:
Robeck Todd R.ORCID, Fei Zhe, Lu Ake T.ORCID, Haghani Amin, Jourdain Eve, Zoller Joseph A.ORCID, Li Caesar Z.ORCID, Steinman Karen J., DiRocco Stacy, Schmitt Todd, Osborn Steve, Van Bonn Bill, Katsumata Etsuko, Mergl June, Almunia JavierORCID, Rodriguez Magdalena, Haulena Martin, Dold Christopher, Horvath SteveORCID
Abstract
AbstractThe development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Reference80 articles.
1. Beal, A. P., Kiszka, J. J., Wells, R. S. & Eirin-Lopez, J. M. The Bottlenose dolphin Epigenetic Aging Tool (BEAT): a molecular age estimation tool for small cetaceans. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00561 (2019). 2. Garde, E., Heide-Jørgensen, M. P., Hansen, S. H., Nachman, G. & Forchhammer, M. C. Age-specific growth and remarkable longevity in narwhals (Monodon monoceros) from West Greenland as estimated by aspartic acid racemization. J. Mammal. 88, 49–58 (2007). 3. Matkin, C. O., Ward Testa, J., Ellis, G. M. & Saulitis, E. L. Life history and population dynamics of southern Alaska resident killer whales (Orcinus orca). Mar. Mammal. Sci. 30, 460–479 (2014). 4. Olesiuk, P., Bigg, M. & Ellis, G. Life history and population dynamics of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Report of the International Whaling Commission. Special 12, 209–243 (1990). 5. Wells, R. S. Primates and Cetaceans: Field Research and Conservation of Complex Mammalian Societies, Primatology Monographs (eds. J. Yamagiwa, & Karczmarski, L.) p. 149–172 (Springer, 2014).
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|