Abstract
AbstractThe bacterial flagellar protein export machinery consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. The gate complex has two intrinsic and distinct H+-driven and Na+-driven engines to drive the export of flagellar structural proteins. Salmonella wild-type cells preferentially use the H+-driven engine under a variety of environmental conditions. To address how the Na+-driven engine is activated, we analyzed the fliJ(Δ13–24) fliH(Δ96–97) mutant and found that the interaction of the FlgN chaperone with FlhA activates the Na+-driven engine when the ATPase complex becomes non-functional. A similar activation can be observed with either of two single-residue substitutions in FlhA. Thus, it is likely that the FlgN-FlhA interaction generates a conformational change in FlhA that allows it to function as a Na+ channel. We propose that this type of activation would be useful for flagellar construction under conditions in which the proton motive force is severely restricted.
Funder
MEXT | Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Reference45 articles.
1. Morimoto, Y. V. & Minamino, T. Structure and function of the bi-directional bacterial flagellar motor. Biomolecules 4, 217–234 (2014).
2. Nakamura, S. & Minamino, T. Flagella-driven motility of bacteria. Biomolecules 9, 279 (2019).
3. Minamino, T. Protein export through the bacterial flagellar type III export pathway. Biochim. Biophys. Acta 1843, 1642–1648 (2014).
4. Minamino, T. Hierarchical protein export mechanism of the bacterial flagellar type III protein export apparatus. FEMS Microbiol. Lett. 365, fny117 (2018).
5. Galán, J. E., Lara-Tejero, M., Marlovits, T. C. & Wagner, S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68, 415–438 (2014).
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献