Human encroachment into wildlife gut microbiomes

Author:

Fackelmann GloriaORCID,Gillingham Mark A. F.ORCID,Schmid Julian,Heni Alexander Christoph,Wilhelm KerstinORCID,Schwensow Nina,Sommer SimoneORCID

Abstract

AbstractIn the Anthropocene, humans, domesticated animals, wildlife, and their environments are interconnected, especially as humans advance further into wildlife habitats. Wildlife gut microbiomes play a vital role in host health. Changes to wildlife gut microbiomes due to anthropogenic disturbances, such as habitat fragmentation, can disrupt natural gut microbiota homeostasis and make animals vulnerable to infections that may become zoonotic. However, it remains unclear whether the disruption to wildlife gut microbiomes is caused by habitat fragmentation per se or the combination of habitat fragmentation with additional anthropogenic disturbances, such as contact with humans, domesticated animals, invasive species, and their pathogens. Here, we show that habitat fragmentation per se does not impact the gut microbiome of a generalist rodent species native to Central America, Tome’s spiny rat Proechimys semispinosus, but additional anthropogenic disturbances do. Indeed, compared to protected continuous and fragmented forest landscapes that are largely untouched by other human activities, the gut microbiomes of spiny rats inhabiting human-disturbed fragmented landscapes revealed a reduced alpha diversity and a shifted and more dispersed beta diversity. Their microbiomes contained more taxa associated with domesticated animals and their potential pathogens, suggesting a shift in potential metagenome functions. On the one hand, the compositional shift could indicate a degree of gut microbial adaption known as metagenomic plasticity. On the other hand, the greater variation in community structure and reduced alpha diversity may signal a decline in beneficial microbial functions and illustrate that gut adaption may not catch up with anthropogenic disturbances, even in a generalist species with large phenotypic plasticity, with potentially harmful consequences to both wildlife and human health.

Funder

Studienstiftung des Deutschen Volkes

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference113 articles.

1. Cunningham, A. A., Daszak, P. & Wood, J. L. N. One health, emerging infectious diseases and wildlife: two decades of progress? Philos. Trans. R. Soc. B Biol. Sci. 372, 20160167 (2017).

2. Suzan, G., Esponda, F., Carrasco-Hernández, R. & Aguirre, A. A. in New Directions in Conservation Medicine: Applied Cases of Ecological Health (eds. Aguirre, A. A., Ostfeld, R. & Daszak, P.). 135–150 (Oxford University Press USA, 2012).

3. Hussain, S., Ram, M. S., Kumar, A., Shivaji, S. & Umapathy, G. Human presence increases parasitic load in endangered lion-tailed macaques (Macaca silenus) in its fragmented rainforest habitats in Southern India. PLoS ONE 8, 1–8 (2013).

4. Junge, R. E., Barrett, M. A. & Yoder, A. D. Effects of anthropogenic disturbance on indri (Indri indri) health in Madagascar. Am. J. Primatol. 73, 632–642 (2011).

5. Friggens, M. M. & Beier, P. Anthropogenic disturbance and the risk of flea-borne disease transmission. Oecologia 164, 809–820 (2010).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3