Real-world size of objects serves as an axis of object space

Author:

Huang TaichengORCID,Song YiyingORCID,Liu JiaORCID

Abstract

AbstractOur mind can represent various objects from physical world in an abstract and complex high-dimensional object space, with axes encoding critical features to quickly and accurately recognize objects. Among object features identified in previous neurophysiological and fMRI studies that may serve as the axes, objects’ real-world size is of particular interest because it provides not only visual information for broad conceptual distinctions between objects but also ecological information for objects’ affordance. Here we use deep convolutional neural networks (DCNNs), which enable direct manipulation of visual experience and units’ activation, to explore how objects’ real-world size is extracted to construct the axis of object space. Like the human brain, the DCNNs pre-trained for object recognition also encode objects’ size as an independent axis of the object space. Further, we find that the shape of objects, rather than retinal size, context, task demands or texture features, is critical to inferring objects’ size for both DCNNs and humans. In short, with DCNNs as a brain-like model, our study devises a paradigm supplemental to conventional approaches to explore the structure of object space, which provides computational support for empirical observations on human perceptual and neural representations of objects.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3