The lexicon of antimicrobial peptides: a complete set of arginine and tryptophan sequences

Author:

Clark SamORCID,Jowitt Thomas A.,Harris Lynda K.,Knight Christopher G.ORCID,Dobson Curtis B.ORCID

Abstract

AbstractOur understanding of the activity of cationic antimicrobial peptides (AMPs) has focused on well-characterized natural sequences, or limited sets of synthetic peptides designed de novo. We have undertaken a comprehensive investigation of the underlying primary structural features that give rise to the development of activity in AMPs. We consider a complete set of all possible peptides, up to 7 residues long, composed of positively charged arginine (R) and / or hydrophobic tryptophan (W), two features most commonly associated with activity. We found the shortest active peptides were 4 or 5 residues in length, and the overall landscapes of activity against gram-positive and gram-negative bacteria and a yeast were positively correlated. For all three organisms we found a single activity peak corresponding to sequences with around 40% R; the presence of adjacent W duplets and triplets also conferred greater activity. The mechanistic basis of these activities comprises a combination of lipid binding, particularly to negatively charged membranes, and additionally peptide aggregation, a mode of action previously uninvestigated for such peptides. The maximum specific antimicrobial activity appeared to occur in peptides of around 10 residues, suggesting ‘diminishing returns’ for developing larger peptides, when activity is considered per residue of peptide.

Funder

RCUK | Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3