Dynamic 3D imaging of cerebral blood flow in awake mice using self-supervised-learning-enhanced optical coherence Doppler tomography

Author:

Pan Yingtian,Park KicheonORCID,Ren Jiaxiang,Volkow Nora D.ORCID,Ling Haibin,Koretsky Alan P.ORCID,Du CongwuORCID

Abstract

AbstractCerebral blood flow (CBF) is widely used to assess brain function. However, most preclinical CBF studies have been performed under anesthesia, which confounds findings. High spatiotemporal-resolution CBF imaging of awake animals is challenging due to motion artifacts and background noise, particularly for Doppler-based flow imaging. Here, we report ultrahigh-resolution optical coherence Doppler tomography (µODT) for 3D imaging of CBF velocity (CBFv) dynamics in awake mice by developing self-supervised deep-learning for effective image denoising and motion-artifact removal. We compare cortical CBFv in awake vs. anesthetized mice and their dynamic responses in arteriolar, venular and capillary networks to acute cocaine (1 mg/kg, i.v.), a highly addictive drug associated with neurovascular toxicity. Compared with awake, isoflurane (2-2.5%) induces vasodilation and increases CBFv within 2-4 min, whereas dexmedetomidine (0.025 mg/kg, i.p.) does not change vessel diameters nor flow. Acute cocaine decreases CBFv to the same extent in dexmedetomidine and awake states, whereas decreases are larger under isoflurane, suggesting that isoflurane-induced vasodilation might have facilitated detection of cocaine-induced vasoconstriction. Awake mice after chronic cocaine show severe vasoconstriction, CBFv decreases and vascular adaptations with extended diving arteriolar/venular vessels that prioritize blood supply to deeper cortical capillaries. The 3D imaging platform we present provides a powerful tool to study dynamic changes in vessel diameters and morphology alongside CBFv networks in the brain of awake animals that can advance our understanding of the effects of drugs and disease conditions (ischemia, tumors, wound healing).

Funder

U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3