Pharmacologically controlling protein-protein interactions through epichaperomes for therapeutic vulnerability in cancer

Author:

Joshi Suhasini,Gomes Erica DaGama,Wang Tai,Corben Adriana,Taldone Tony,Gandu SrinivasaORCID,Xu Chao,Sharma SahilORCID,Buddaseth Salma,Yan PengrongORCID,Chan Lon Yin L.,Gokce Askan,Rajasekhar Vinagolu K.,Shrestha Lisa,Panchal Palak,Almodovar Justina,Digwal Chander S.ORCID,Rodina AnnaORCID,Merugu Swathi,Pillarsetty NagaVaraKishoreORCID,Miclea VladORCID,Peter Radu I.ORCID,Wang WanyanORCID,Ginsberg Stephen D.,Tang Laura,Mattar Marissa,de Stanchina Elisa,Yu Kenneth H.,Lowery Maeve,Grbovic-Huezo OliveraORCID,O’Reilly Eileen M.ORCID,Janjigian Yelena,Healey John H.ORCID,Jarnagin William R.,Allen Peter J.,Sander Chris,Erdjument-Bromage HediyeORCID,Neubert Thomas A.,Leach Steven D.ORCID,Chiosis GabrielaORCID

Abstract

AbstractCancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours. Further, we can essentially force tumours into interactome hyperconnectivity and maximal protein-protein interaction capacity, a state whereby no rebound pathways can be deployed and where alternative signalling is supressed. This approach therefore primes interactomes to enhance vulnerability and improve treatment efficacy, enabling therapeutics with traditionally poor performance to become highly efficacious. These findings provide proof-of-principle for a paradigm to overcome drug resistance through pharmacologic manipulation of proteome-wide protein-protein interaction networks.

Funder

U.S. Department of Health & Human Services | NIH | National Cancer Institute

U.S. Department of Health & Human Services | NIH | National Institute on Aging

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3