Hearing as adaptive cascaded envelope interpolation

Author:

Thoret EtienneORCID,Ystad SølviORCID,Kronland-Martinet RichardORCID

Abstract

AbstractThe human auditory system is designed to capture and encode sounds from our surroundings and conspecifics. However, the precise mechanisms by which it adaptively extracts the most important spectro-temporal information from sounds are still not fully understood. Previous auditory models have explained sound encoding at the cochlear level using static filter banks, but this vision is incompatible with the nonlinear and adaptive properties of the auditory system. Here we propose an approach that considers the cochlear processes as envelope interpolations inspired by cochlear physiology. It unifies linear and nonlinear adaptive behaviors into a single comprehensive framework that provides a data-driven understanding of auditory coding. It allows simulating a broad range of psychophysical phenomena from virtual pitches and combination tones to consonance and dissonance of harmonic sounds. It further predicts the properties of the cochlear filters such as frequency selectivity. Here we propose a possible link between the parameters of the model and the density of hair cells on the basilar membrane. Cascaded Envelope Interpolation may lead to improvements in sound processing for hearing aids by providing a non-linear, data-driven, way to preprocessing of acoustic signals consistent with peripheral processes.

Funder

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference71 articles.

1. Seebeck, A. Beobachtungen über einige Bedingungen der Entstehung von Tönen. Ann. Phys. 129, 417–436 (1841).

2. Helmholtz, H. L. On the Sensations of Tone as a Physiological Basis for the Theory of Music. (Cambridge University Press, 1885).

3. Gerog, von B. & Peake, W. T. Experiments in Hearing 2905–2905 (1960).

4. Gabor, D. Acoustical quanta and the theory of hearing. Nature 159, 591–594 (1947).

5. Yang, X., Wang, K. & Shamma, S. A. Auditory representations of acoustic signals. IEEE Trans. Inf. Theory 38, 824–839 (1992).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3