Abstract
AbstractDeciphering cell−cell communication is a key step in understanding the physiology and pathology of multicellular systems. Recent advances in single-cell transcriptomics have contributed to unraveling the cellular composition of tissues and enabled the development of computational algorithms to predict cellular communication mediated by ligand−receptor interactions. Despite the existence of various tools capable of inferring cell−cell interactions from single-cell RNA sequencing data, the analysis and interpretation of the biological signals often require deep computational expertize. Here we present InterCellar, an interactive platform empowering lab-scientists to analyze and explore predicted cell−cell communication without requiring programming skills. InterCellar guides the biological interpretation through customized analysis steps, multiple visualization options, and the possibility to link biological pathways to ligand−receptor interactions. Alongside convenient data exploration features, InterCellar implements data-driven analyses including the possibility to compare cell−cell communication from multiple conditions. By analyzing COVID-19 and melanoma cell−cell interactions, we show that InterCellar resolves data-driven patterns of communication and highlights molecular signals through the integration of biological functions and pathways. We believe our user-friendly, interactive platform will help streamline the analysis of cell−cell communication and facilitate hypothesis generation in diverse biological systems.
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献