Abstract
AbstractAnimals navigate using various sensory information to guide their movement. Miniature tracking devices now allow documenting animals’ routes with high accuracy. Despite this detailed description of animal movement, how animals translate sensory information to movement is poorly understood. Recent machine learning advances now allow addressing this question with unprecedented statistical learning tools. We harnessed this power to address visual-based navigation in fruit bats. We used machine learning and trained a convolutional neural network to navigate along a bat’s route using visual information that would have been available to the real bat, which we collected using a drone. We show that a simple feed-forward network can learn to guide the agent towards a goal based on sensory input, and can generalize its learning both in time and in space. Our analysis suggests how animals could potentially use visual input for navigation and which features might be useful for this purpose.
Funder
European Research Council (ERC–GPSBAT).
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献