Abstract
AbstractWhile RSV is a major cause of respiratory morbidity in infants, vaccine development is hindered by the immaturity and Th2-bias of the infant immune system and the legacy of enhanced respiratory disease (ERD) after RSV infection following immunization with formalin inactivated (FI)-RSV vaccine in earlier clinical trials. Preclinical studies have demonstrated that an adenoviral vector-based RSV F vaccine candidate (Ad26.RSV.FA2) induces Th1-biased protective immune responses, without signs of ERD upon subsequent RSV challenge. We here developed an Ad26 vector encoding the RSV F protein stabilized in its prefusion conformation (Ad26.RSV.preF). In adult mice, Ad26.RSV.preF induced superior, Th1-biased IgG2a-dominated humoral responses as compared to Ad26.RSV.FA2, while maintaining the strong Th1-biased cellular responses. Similar to adult mice, Ad26.RSV.preF induced robust and durable humoral immunity in neonatal mice, again characterized by IgG2a-dominated RSV F-binding antibodies, and high and stable virus-neutralizing titers. In addition, vaccine-elicited cellular immune responses were durable and characterized by IFN-γ-producing CD4+ and CD8+ T cells, with a profound Th1 bias. In contrast, immunization of neonatal mice with FI-RSV resulted in IgG1 RSV F-binding antibodies associated with a Th2 phenotype, no detectable virus-neutralizing antibodies, and a Th2-biased cellular response. These results are supportive for the clinical development of Ad26.RSV.preF for use in infants.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Pharmacology,Immunology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献