Abstract
AbstractThe avian influenza virus outbreak in 1997 highlighted the potential of the highly pathogenic H5N1 virus to cause severe disease in humans. Therefore, effective vaccines against H5N1 viruses are needed to counter the potential threat of a global pandemic. We have previously developed a fast-acting and efficacious vaccine against Ebola virus (EBOV) using the vesicular stomatitis virus (VSV) platform. In this study, we generated recombinant VSV-based H5N1 influenza virus vectors to demonstrate the feasibility of this platform for a fast-acting pan-H5 influenza virus vaccine. We chose multiple approaches regarding antigen design and genome location to define a more optimized vaccine approach. After the VSV-based H5N1 influenza virus constructs were recovered and characterized in vitro, mice were vaccinated by a single dose or prime/boost regimen followed by challenge with a lethal dose of the homologous H5 clade 1 virus. We found that a single dose of VSV vectors expressing full-length hemagglutinin (HAfl) were sufficient to provide 100% protection. The vaccine vectors were fast-acting as demonstrated by uniform protection when administered 3 days prior to lethal challenge. Moreover, single vaccination induced cross-protective H5-specific antibodies and protected mice against lethal challenge with various H5 clade 2 viruses, highlighting the potential of the VSV-based HAfl as a pan-H5 influenza virus emergency vaccine.
Funder
Division of Intramural Research, National Institute of Allergy and Infectious Diseases
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Pharmacology,Immunology
Reference53 articles.
1. Ferhadian, D. et al. Structural and functional motifs in influenza virus RNAs. Front. Microbiol. 9, 559 (2018).
2. Yoon, S. W., Webby, R. J. & Webster, R. G. Evolution and ecology of influenza A viruses. Curr. Top. Microb. Immunol. 385, 359–375 (2014).
3. Fouchier, R. A. et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J. Virol. 79, 2814–2822 (2005).
4. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 152–179 (1992).
5. Suzuki, Y. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol. Pharm. Bull. 28, 399–408 (2005).
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献