Author:
Burn Aschner Clare,Knipe David M.,Herold Betsy C.
Abstract
AbstractA majority of the world’s population is infected with HSV-1, highlighting the need for vaccines that are effective in HSV-1-seropositive hosts. We established a superinfection model by infecting mice intranasally with a sublethal dose of HSV-1, which results in high rates of seropositive, latently infected mice susceptible to HSV-2 superinfection. Sublethal HSV-1 induced a predominantly neutralizing antibody response. Vaccination of HSV-1-seropositive mice with recombinant adjuvanted glycoprotein D (rgD-2) failed to significantly boost HSV total or neutralizing antibody responses and provided no significant increased protection against HSV-2 superinfection compared to control-vaccinated HSV-1-seropositive mice. In contrast, immunization with a single-cycle virus deleted in gD (ΔgD-2) significantly boosted total HSV-specific antibody titers and elicited new antibody-dependent cell-mediated cytotoxicity responses, providing complete protection from death following HSV-2 superinfection. This model recapitulates clinical responses to natural infection and the rgD-2 vaccine trial outcomes and suggests that ΔgD-2 may prove protective in HSV-1-seropositive hosts.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases
Howard Hughes Medical Institute
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Pharmacology,Immunology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献