Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane

Author:

Borne Kurtis D.,Cooper Joseph C.,Ashfold Michael N. R.ORCID,Bachmann JulienORCID,Bhattacharyya Surjendu,Boll RebeccaORCID,Bonanomi Matteo,Bosch MichaelORCID,Callegari CarloORCID,Centurion MartinORCID,Coreno Marcello,Curchod Basile F. E.ORCID,Danailov Miltcho B.,Demidovich AlexanderORCID,Di Fraia MicheleORCID,Erk BenjaminORCID,Faccialà DavideORCID,Feifel RaimundORCID,Forbes Ruaridh J. G.ORCID,Hansen Christopher S.ORCID,Holland David M. P.ORCID,Ingle Rebecca A.ORCID,Lindh RolandORCID,Ma Lingyu,McGhee Henry G.,Muvva Sri BhavyaORCID,Nunes Joao Pedro FigueiraORCID,Odate Asami,Pathak ShashankORCID,Plekan Oksana,Prince Kevin C.ORCID,Rebernik Primoz,Rouzée Arnaud,Rudenko ArtemORCID,Simoncig Alberto,Squibb Richard J.,Venkatachalam Anbu Selvam,Vozzi CaterinaORCID,Weber Peter M.ORCID,Kirrander AdamORCID,Rolles DanielORCID

Abstract

AbstractThe light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.

Funder

DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division

RCUK | Engineering and Physical Sciences Research Council

Leverhulme Trust

National Science Foundation

Department of Education and Training | Australian Research Council

RCUK | Science and Technology Facilities Council

Vetenskapsrådet

EC | Horizon 2020 Framework Programme

DOE | SC | Basic Energy Sciences

Royal Society

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3