The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source
-
Published:2022-11-14
Issue:1
Volume:15
Page:129-135
-
ISSN:1755-4330
-
Container-title:Nature Chemistry
-
language:en
-
Short-container-title:Nat. Chem.
Author:
Finkenzeller HenningORCID, Iyer SiddharthORCID, He Xu-ChengORCID, Simon Mario, Koenig Theodore K.ORCID, Lee Christopher F., Valiev RashidORCID, Hofbauer Victoria, Amorim Antonio, Baalbaki RimaORCID, Baccarini AndreaORCID, Beck LisaORCID, Bell David M., Caudillo Lucía, Chen Dexian, Chiu Randall, Chu BiwuORCID, Dada LubnaORCID, Duplissy JonathanORCID, Heinritzi Martin, Kemppainen Deniz, Kim ChanghyukORCID, Krechmer JordanORCID, Kürten Andreas, Kvashnin AlexandrORCID, Lamkaddam Houssni, Lee Chuan PingORCID, Lehtipalo KatrianneORCID, Li Zijun, Makhmutov VladimirORCID, Manninen Hanna E.ORCID, Marie Guillaume, Marten RubyORCID, Mauldin Roy L., Mentler BernhardORCID, Müller TatjanaORCID, Petäjä TuukkaORCID, Philippov MaximORCID, Ranjithkumar Ananth, Rörup Birte, Shen Jiali, Stolzenburg Dominik, Tauber ChristianORCID, Tham Yee JunORCID, Tomé António, Vazquez-Pufleau Miguel, Wagner Andrea C., Wang Dongyu S., Wang Mingyi, Wang Yonghong, Weber Stefan K., Nie WeiORCID, Wu Yusheng, Xiao Mao, Ye Qing, Zauner-Wieczorek MarcelORCID, Hansel ArminORCID, Baltensperger Urs, Brioude Jérome, Curtius JoachimORCID, Donahue Neil M.ORCID, Haddad Imad ElORCID, Flagan Richard C., Kulmala MarkkuORCID, Kirkby JasperORCID, Sipilä Mikko, Worsnop Douglas R., Kurten TheoORCID, Rissanen MattiORCID, Volkamer RainerORCID
Abstract
AbstractIodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O3 surface concentrations. Although iodic acid (HIO3) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved. Here, in CLOUD atmospheric simulation chamber experiments that generate iodine radicals at atmospherically relevant rates, we show that iodooxy hypoiodite, IOIO, is efficiently converted into HIO3 via reactions (R1) IOIO + O3 → IOIO4 and (R2) IOIO4 + H2O → HIO3 + HOI + (1)O2. The laboratory-derived reaction rate coefficients are corroborated by theory and shown to explain field observations of daytime HIO3 in the remote lower free troposphere. The mechanism provides a missing link between iodine sources and particle formation. Because particulate iodate is readily reduced, recycling iodine back into the gas phase, our results suggest a catalytic role of iodine in aerosol formation.
Publisher
Springer Science and Business Media LLC
Subject
General Chemical Engineering,General Chemistry
Reference65 articles.
1. Kreidenweis, S. M. & Seinfeld, J. H. Nucleation of sulfuric acid–water and methanesulfonic acid–water solution particles: implications for the atmospheric chemistry of organosulfur species. Atmos. Environ. 22, 283–296 (1988). 2. Kuang, C., McMurry, P. H., McCormick, A. V. & Eisele, F. L. Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007JD009253 (2008). 3. Kirkby, J. et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429–433 (2011). 4. Dawson, M. L. et al. Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations. Proc. Natl Acad. Sci. USA 109, 18719–18724 (2012). 5. Wang, M. et al. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature 581, 184–189 (2020).
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|