Abstract
AbstractThe tetrazine ligation is an inverse electron-demand Diels–Alder reaction widely used for bioorthogonal modifications due to its versatility, site specificity and fast reaction kinetics. A major limitation has been the incorporation of dienophiles in biomolecules and organisms, which relies on externally added reagents. Available methods require the incorporation of tetrazine-reactive groups by enzyme-mediated ligations or unnatural amino acid incorporation. Here we report a tetrazine ligation strategy, termed TyrEx (tyramine excision) cycloaddition, permitting autonomous dienophile generation in bacteria. It utilizes a unique aminopyruvate unit introduced by post-translational protein splicing at a short tag. Tetrazine conjugation occurs rapidly with a rate constant of 0.625 (15) M−1 s−1 and was applied to produce a radiolabel chelator-modified Her2-binding Affibody and intracellular, fluorescently labelled cell division protein FtsZ. We anticipate the labelling strategy to be useful for intracellular studies of proteins, as a stable conjugation method for protein therapeutics, as well as other applications.
Publisher
Springer Science and Business Media LLC
Subject
General Chemical Engineering,General Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献