Abstract
AbstractCovalent and non-covalent molecular binding are two strategies to tailor surface properties and functions. However, the lack of responsiveness and requirement for specific binding groups makes spatiotemporal control challenging. Here, we report the adaptive insertion of a hydrophobic anchor into a poly(ethylene glycol) (PEG) host as a non-covalent binding strategy for surface functionalization. By using polycyclic aromatic hydrocarbons as the hydrophobic anchor, hydrophilic charged and non-charged functional modules were spontaneously loaded onto PEG corona in 2 min without the assistance of any catalysts and binding groups. The thermodynamically favourable insertion of the hydrophobic anchor can be reversed by pulling the functional module, enabling programmable surface functionalization. We anticipate that the adaptive molecular recognition between the hydrophobic anchor and the PEG host will challenge the hydrophilic understanding of PEG and enhance the progress in nanomedicine, advanced materials and nanotechnology.
Publisher
Springer Science and Business Media LLC
Subject
General Chemical Engineering,General Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献