Abstract
AbstractOrganic light-emitting diode (OLED) fibers with favorable electroluminescence properties and interconnectable pixel configurations have represented the potential for wearable electronic textile displays. Nevertheless, the current technology of OLED fiber-based textile displays still leaves to be desired due to several challenges, including limited emission area and lack of encapsulation systems. Here we present a fibrous OLED textile display that can attain a large emission area and long-term stability by implementing addressable networks comprised of integrated phosphorescence OLED fibers and by designing multilayer encapsulations. The integrated fiber configuration offers decoupled functional fiber surfaces for an interconnectable 1-dimensional OLED pixel array and a data-addressing conductor. Tailored triadic metal/ultrathin oxide/polymer multilayer enables not only the oxygen/water permeation inhibition but also the controllable conductive channels of dielectric antifuses. Together with reliable bending stability, the long-term operation of OLED textiles in water manifests the feasibility of the present device concept toward water-resistant full-emitting-area fibrous textile displays.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献