Self-powered and flexible piezo-sensors based on conductivity-controlled GaN nanowire-arrays for mimicking rapid- and slow-adapting mechanoreceptors

Author:

Waseem AadilORCID,Abdullah Ameer,Bagal Indrajit V.,Ha Jun-Seok,Lee June Key,Ryu Sang-WanORCID

Abstract

AbstractHuman skin contains slowly adaptive (SA) and rapidly adaptive (RA) mechanoreceptors, which respond differently to external stimuli. Based on human tactile perception principles, the fabrication of a self-powered electronic skin (e-skin) that simultaneously mimics SA- and RA-mechanoreceptors is a prime need for robots and artificial prosthetics to interact with the surrounding environment. However, the complex process of merging multimode sensors to mimic SA- and RA-mechanoreceptors hinders their utilization in e-skins. We proposed SA- and RA-mechanoreceptors based on n-type and semi-insulating GaN nanowire arrays. The SA- and RA-mechanoreceptors demonstrated distinguished features such as grasping of objects and detection of their surface textures. Based on piezoelectric sensing principles, the proposed e-skin can simultaneously mimic static and dynamic pressure signals. Mechanoreceptors further detected several stimuli of various pressures with low and high frequencies. The response and reset times showed by SA-mechanoreceptors were 11 and 18 ms under 1-Hz frequency, which are rapid enough for practical e-skin applications.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3