Printing accuracy tracking with 2D optical microscopy and super-resolution metamaterial-assisted 1D terahertz spectroscopy

Author:

Zhuldybina Mariia,Ropagnol Xavier,Bois Chloé,Zednik Ricardo J.ORCID,Blanchard FrançoisORCID

Abstract

AbstractPrintable electronics is a promising manufacturing technology for the potential production of low-cost flexible electronic devices, ranging from displays to active wear. It is known that rapid printing of conductive ink on a flexible substrate is vulnerable to several sources of variation during the manufacturing process. However, this process is still not being subjected to a quality control method that is both non-invasive and in situ. To address this issue, we propose controlling the printing accuracy by monitoring the spatial distribution of the deposited ink using terahertz (THz) waves. The parameters studied are the printing speed of an industrial roll-to-roll press with flexography printing units and the pre-calibration compression, or expansion factor, for a pattern printed on a flexible plastic substrate. The pattern, which is carefully selected, has Babinet’s electromagnetic transmission properties in the THz frequency range. To validate our choice, we quantified the geometric variations of the printed pattern by visible microscopy and compared its accuracy using one-dimensional THz spectroscopy. Our study shows a remarkable agreement between visible microscopic observation of the printing performance and the signature of the THz transmission. Notably, under specific conditions, one-dimensional (1D) THz information from a resonant pattern can be more accurate than two-dimensional (2D) microscopy information. This result paves the way for a simple strategy for non-invasive and contactless in situ monitoring of printable electronics production.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3