Uniaxial extending neural probes for bleeding-absent implantation

Author:

Ren Xueyang,Bai Wen,Chen Shisheng,Yuan Yuehui,Shao Xiaodong,Zhu Xuefei,Wang Li,Jiang Qin,Hu BenhuiORCID

Abstract

AbstractImplantable neural probes, essential for brain electrophysiological research, have advanced with ultra-flexible designs to mitigate immune responses and postoperative complications. Strategies of shuttle-assisted implantation and temporary stiffening address issues in penetrating these probes into the target region, avoiding undesired bending. However, the risk of intraoperative bleeding remains due to these implants’ necessary rigidity during insertion. Here, we describe a neural probe with mechanical compliance accompanying self-implantation along the principal axis in the absence of bleeding. Crucial to the behavior is its anisotropic relaxation, which is dominated by the cross-sectional in-plane deformation inhibition due to interchain interactions between the parallel backbones in the globally aligned polymer system. We observed the ensured upright insertion of the probe into the brain while avoiding angiorrhexis with a two-photon microscope and a high-speed camera. The probes permit electrophysiological studies with minimal foreign body responses and imageological compatibility, underscoring their clinical potential.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3