Abstract
AbstractTransparent electrodes (TEs) with high chemical stability and excellent flexibility are critical for flexible optoelectronic devices, such as photodetectors, solar cells, and light-emitting diodes. Ultrathin metal electrode (thickness less than 20 nm) has been a promising TE candidate, but the fabrication can only be realized by vacuum-based technologies to date, and require tedious surface engineering of the substrates, which are neither ideal for polymeric based flexible applications nor suitable for roll-to-roll large-scale manufacture. This paper presents high-performance nanostructured transparent metal electrodes formation via displacement–diffusion-etch (DDE) process, which enables the solution-processed sub-20-nm-thick ultrathin gold electrodes (UTAuEs) on a wide variety of hard and soft substrates. UTAuEs fabricated on flexible polyethylene terephthalate (PET) substrates show a high chemical/environmental stability and superior bendability to commercial flexible indium–tin-oxide (ITO) electrodes. Moreover, flexible organic solar cells made with UTAuEs show similar power conversion efficiency but much enhanced flexibility, in comparison to that of ITO-based devices.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献