SANS-CNN: An automated machine learning technique for spaceflight associated neuro-ocular syndrome with astronaut imaging data

Author:

Kamran Sharif AmitORCID,Hossain Khondker Fariha,Ong JoshuaORCID,Zaman NasifORCID,Waisberg EthanORCID,Paladugu Phani,Lee Andrew G.,Tavakkoli AlirezaORCID

Abstract

AbstractSpaceflight associated neuro-ocular syndrome (SANS) is one of the largest physiologic barriers to spaceflight and requires evaluation and mitigation for future planetary missions. As the spaceflight environment is a clinically limited environment, the purpose of this research is to provide automated, early detection and prognosis of SANS with a machine learning model trained and validated on astronaut SANS optical coherence tomography (OCT) images. In this study, we present a lightweight convolutional neural network (CNN) incorporating an EfficientNet encoder for detecting SANS from OCT images titled “SANS-CNN.” We used 6303 OCT B-scan images for training/validation (80%/20% split) and 945 for testing with a combination of terrestrial images and astronaut SANS images for both testing and validation. SANS-CNN was validated with SANS images labeled by NASA to evaluate accuracy, specificity, and sensitivity. To evaluate real-world outcomes, two state-of-the-art pre-trained architectures were also employed on this dataset. We use GRAD-CAM to visualize activation maps of intermediate layers to test the interpretability of SANS-CNN’s prediction. SANS-CNN achieved 84.2% accuracy on the test set with an 85.6% specificity, 82.8% sensitivity, and 84.1% F1-score. Moreover, SANS-CNN outperforms two other state-of-the-art pre-trained architectures, ResNet50-v2 and MobileNet-v2, in accuracy by 21.4% and 13.1%, respectively. We also apply two class-activation map techniques to visualize critical SANS features perceived by the model. SANS-CNN represents a CNN model trained and validated with real astronaut OCT images, enabling fast and efficient prediction of SANS-like conditions for spaceflight missions beyond Earth’s orbit in which clinical and computational resources are extremely limited.

Funder

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3