The value of a spaceflight clinical decision support system for earth-independent medical operations

Author:

Russell Brian K.ORCID,Burian Barbara K.,Hilmers David C.ORCID,Beard Bettina L.,Martin Kara,Pletcher David L.,Easter BenORCID,Lehnhardt KrisORCID,Levin DanaORCID

Abstract

AbstractAs NASA prepares for crewed lunar missions over the next several years, plans are also underway to journey farther into deep space. Deep space exploration will require a paradigm shift in astronaut medical support toward progressively earth-independent medical operations (EIMO). The Exploration Medical Capability (ExMC) element of NASA’s Human Research Program (HRP) is investigating the feasibility and value of advanced capabilities to promote and enhance EIMO. Currently, astronauts rely on real-time communication with ground-based medical providers. However, as the distance from Earth increases, so do communication delays and disruptions. Moreover, resupply and evacuation will become increasingly complex, if not impossible, on deep space missions. In contrast to today’s missions in low earth orbit (LEO), where most medical expertise and decision-making are ground-based, an exploration crew will need to autonomously detect, diagnose, treat, and prevent medical events. Due to the sheer amount of pre-mission training required to execute a human spaceflight mission, there is often little time to devote exclusively to medical training. One potential solution is to augment the long duration exploration crew’s knowledge, skills, and abilities with a clinical decision support system (CDSS). An analysis of preliminary data indicates the potential benefits of a CDSS to mission outcomes when augmenting cognitive and procedural performance of an autonomous crew performing medical operations, and we provide an illustrative scenario of how such a CDSS might function.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long Round-Trip Time Delay Effects on Performance of a Simulated Appendectomy Task;Aerospace Medicine and Human Performance;2024-09-01

2. A Method to Determine Capabilities and Resources for Spacecraft Medical Systems;Aerospace Medicine and Human Performance;2024-07-01

3. The human biology of spaceflight;American Journal of Human Biology;2024-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3