Characterizing dehydration in short-term spaceflight using evidence from Project Mercury

Author:

Reynolds Robert J.ORCID,Shelhamer Mark,Antonsen Erik L.,Carpentier William R.

Abstract

AbstractShort-term spaceflight is commonly perceived as posing minimal risk to human health and performance. However, despite their duration, short-term flights potentially induce acute physiological changes that create risk to crews. One such change is dehydration (primarily body water loss) due to a heat-stressed environment. Such loss, if severe and prolonged, can lead to decrements in performance as well as increase the risk of more serious medical conditions. Though the general mechanisms of dehydration are broadly understood, the rate and extent of dehydration in short-term spaceflight has not been characterized. Combining data from the six spaceflights of the US Mercury program with a causal diagram illustrating the mechanisms of dehydration, we fit a path model to estimate the causal effects for all pathways in the causal model. Results demonstrate that Mercury astronauts experienced some degree of dehydration across the range of suited time and that the relationship between suited time and dehydration appears to be logarithmic. We discuss causal interpretations of the results and how the results from this and similar analyses can inform countermeasure development for short-term spaceflight.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3