Passive limitation of surface contamination by perFluoroDecylTrichloroSilane coatings in the ISS during the MATISS experiments

Author:

Lemelle LaurenceORCID,Rouquette Sébastien,Mottin Eléonore,Le Tourneau Denis,Marcoux Pierre R.ORCID,Thévenot Cécile,Maillet AlainORCID,Nonglaton GuillaumeORCID,Place ChristopheORCID

Abstract

AbstractFuture long-duration human spaceflight will require developments to limit biocontamination of surface habitats. The MATISS (Microbial Aerosol Tethering on Innovative Surfaces in the international Space Station) experiments allowed for exposing surface treatments in the ISS (International Space Station) using a sample-holder developed to this end. Three campaigns of FDTS (perFluoroDecylTrichloroSilane) surface exposures were performed over monthly durations during distinct periods. Tile scanning optical microscopy (×3 and ×30 magnifications) showed a relatively clean environment with a few particles on the surface (0.8 to 7 particles per mm2). The varied densities and shapes in the coarse area fraction (50–1500 µm2) indicated different sources of contamination in the long term, while the bacteriomorph shapes of the fine area fraction (0.5–15 µm2) were consistent with microbial contamination. The surface contamination rates correlate to astronauts’ occupancy rates on board. Asymmetric particles density profiles formed throughout time along the air-flow. The higher density values were located near the flow entry for the coarse particles, while the opposite was the case for the fine particles, probably indicating the hydrophobic interaction of particles with the FDTS surface.

Funder

European Space Agency

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)

Reference70 articles.

1. Ott, M. & Pierson, D. Space habitation and microbiology: status and roadmap of space agencies. Microbes Environ. 29, 239–242 (2014).

2. International Space Exploration Coordinating Group, The Global Exploration Roadmap, ISECG Technical Report, Jan. https://www.globalspaceexploration.org/wordpress/wp-content/isecg/GER_2018_small_mobile.pdf (2018).

3. Yamaguchi, N. et al. Microbial monitoring of crewed habitats in space—current status and future perspectives. Microbes Environ. 29, 250–260 (2014).

4. Baranov, V. M. et al. Main results of the Biorisk experiment on the International Space Station. Aviakosm. Ekol. Med. 40, 3–9 (2006).

5. Jorgensen, J. H. et al. Development of an antimicrobial susceptibility testing method suitable for performance during space flight. J. Clin. Microbiol. 35, 2093–2097 (1997).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3