Condensation heat transfer in microgravity conditions

Author:

Berto Arianna,Azzolin Marco,Bortolin Stefano,Miscevic MarcORCID,Lavieille Pascal,Del Col DavideORCID

Abstract

AbstractIn the present paper, a thorough review of the experimental and numerical studies dealing with filmwise and dropwise condensation under microgravity is reported, covering mechanisms both inside tubes and on plain or enhanced surfaces. The gravity effect on the condensation heat transfer is examined considering the results of studies conducted both in terrestrial environment and in the absence of gravity. From the literature, it can be inferred that the influence of gravity on the condensation heat transfer inside tubes can be limited by increasing the mass flux of the operating fluid and, at equal mass flux, by decreasing the channel diameter. There are flow conditions at which gravity does exert a negligible effect during in-tube condensation: predictive tools for identifying such conditions and for the evaluation of the condensation heat transfer coefficient are also discussed. With regard to dropwise condensation, if liquid removal depends on gravity, this prevents its application in low gravity space systems. Alternatively, droplets can be removed by the high vapor velocity or by passive techniques based on the use of condensing surfaces with wettability gradients or micrometric/nanometric structuration: these represent an interesting solution for exploiting the benefits of dropwise condensation in terms of heat transfer enhancement and equipment compactness in microgravitational environments. The experimental investigation of the condensation heat transfer for long durations in steady-state zero-gravity conditions, such as inside the International Space Station, may compensate the substantial lack of repeatable experimental data and allow the development of reliable design tools for space applications.

Funder

European Space Agency

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3