A three-dimensional flow model of screen channel liquid acquisition devices for propellant management in microgravity

Author:

Wang Zheng,Yang GuangORCID,Wang Ye,Jin Xin,Zhuan Rui,Zhang Hao,Wu Jingyi

Abstract

AbstractScreen channel liquid acquisition devices (LADs) are among the most promising technologies for separating liquid and vapor phases in propellant storage tanks under microgravity conditions and thus ensuring vapor-free propellant supply to spacecraft engines. However, the prediction of the critical flow rate of a screen channel LAD relies on the full understanding of the three dimensional distribution of injection velocity. In this study, the flow characteristics at the entrance region of the LAD were investigated via particle image velocimetry (PIV) technique and numerical simulations under various working conditions. The experimental results illustrated that the velocity component normal to the porous woven mesh is non-uniform in both streamwise and spanwise directions of channel flow and that this phenomenon has a significant influence on the critical flow rate. Hence, a model that accounts for the three-dimensional flow field was proposed to predict the critical flow rate. The average error in the critical flow rate, which was determined by comparing the proposed model’s predictions and the experimental results, was less than 8.4%.

Funder

National Natural Science Foundation of China

Shanghai Academy of Spaceflight Technology

Shanghai Sailing Program

the fund of the State Key Laboratory of Technologies in Space Cryogenic Propellants

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-driven methods for flow and transport in porous media: A review;International Journal of Heat and Mass Transfer;2024-12

2. Capillary pumping-evaporation modeling and experimental characterization of saline water transport for passive solar desalination;International Journal of Heat and Mass Transfer;2024-05

3. Effect of physical properties on the dynamics of an isolated bubble squeezing through a narrow constriction;International Journal of Multiphase Flow;2023-12

4. Property Measurements of Molten Oxides at High Temperature Using Containerless Methods;The Materials Research Society Series;2023-10-26

5. Effect of Wicking Capability on the Reseal Pressure of Woven Screens for On-Orbit Cryogenic Propellants Management;Proceedings of the 28th International Cryogenic Engineering Conference and International Cryogenic Materials Conference 2022;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3