Granular flow experiment using artificial gravity generator at International Space Station

Author:

Ozaki S.ORCID,Ishigami G.ORCID,Otsuki M.ORCID,Miyamoto H.,Wada K.ORCID,Watanabe Y.,Nishino T.,Kojima H.,Soda K.,Nakao Y.,Sutoh M.ORCID,Maeda T.,Kobayashi T.

Abstract

AbstractStudying the gravity-dependent characteristics of regolith, fine-grained granular media covering extra-terrestrial bodies is essential for the reliable design and analysis of landers and rovers for space exploration. In this study, we propose an experimental approach to examine a granular flow under stable artificial gravity conditions for a long duration generated by a centrifuge at the International Space Station. We also perform a discrete element simulation of the granular flow in both artificial and natural gravity environments. The simulation results verify that the granular flows in artificial and natural gravity are consistent. Further, regression analysis of the experimental results reveals that the mass flow rate of granular flow quantitatively follows a well-known physics-based law with some deviations under low-gravity conditions, implying that the bulk density of the granular media decreases with gravity. This insight also indicates that the bulk density considered in simulation studies of space probes under low-gravity conditions needs to be tuned for their reliable design and analysis.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)

Reference51 articles.

1. 2020 NASA Technology Taxonomy, https://techport.nasa.gov/view/taxonomy (2021).

2. Lange, C. et al. GER technology development map - a coordinated analysis of technology development interests. AIAA SPACE 2013 Conference and Exposition 2013–5505 (AIAA, 2013).

3. ISECG Technology Working Group. Global exploration roadmap critical technology needs, https://www.globalspaceexploration.org/wp-content/uploads/2019/12/2019_GER_Technologies_Portfolio_ver.IR-2019.12.13.pdf (2019).

4. Rogers, F. Apollo Experience Report – Lunar Module Landing Gear Subsystem. Report No. TN D–6850 (NASA, 1972).

5. Wan, J., Nie, H., Chen, J. & Lin, Q. Modeling and simulation of lunar lander soft-landing using transient dynamics approach. In Proc. 2010 International Conference on Computational and Information Sciences 741–744. https://doi.org/10.1109/ICCIS.2010.184 (IEEE, 2010).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3