Skeletal adaptations in young male mice after 4 weeks aboard the International Space Station

Author:

Maupin Kevin A.,Childress Paul,Brinker Alexander,Khan Faisal,Abeysekera Irushi,Aguilar Izath Nizeet,Olivos David J.,Adam Gremah,Savaglio Michael K.,Ganesh Venkateswaran,Gorden Riley,Mannfeld Rachel,Beckner Elliott,Horan Daniel J.,Robling Alexander G.,Chakraborty Nabarun,Gautam Aarti,Hammamieh Rasha,Kacena Melissa A.

Abstract

Abstract Gravity has an important role in both the development and maintenance of bone mass. This is most evident in the rapid and intense bone loss observed in both humans and animals exposed to extended periods of microgravity in spaceflight. Here, cohabitating 9-week-old male C57BL/6 mice resided in spaceflight for ~4 weeks. A skeletal survey of these mice was compared to both habitat matched ground controls to determine the effects of microgravity and baseline samples in order to determine the effects of skeletal maturation on the resulting phenotype. We hypothesized that weight-bearing bones would experience an accelerated loss of bone mass compared to non-weight-bearing bones, and that spaceflight would also inhibit skeletal maturation in male mice. As expected, spaceflight had major negative effects on trabecular bone mass of the following weight-bearing bones: femur, tibia, and vertebrae. Interestingly, as opposed to the bone loss traditionally characterized for most weight-bearing skeletal compartments, the effects of spaceflight on the ribs and sternum resembled a failure to accumulate bone mass. Our study further adds to the insight that gravity has site-specific influences on the skeleton.

Funder

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)

Reference27 articles.

1. Bikle, D. D., Sakata, T. & Halloran, B. P. The impact of skeletal unloading on bone formation. Gravit. Space Biol. Bull. 16, 45–54 (2003).

2. Cavanagh, P. R., Licata, A. A. & Rice, A. J. Exercise and pharmacological countermeasures for bone loss during long-duration space flight. Gravit. Space Biol. Bull. 18, 39–58 (2005).

3. Demontis, G. C. et al. Human pathophysiological adaptations to the space environment. Front. Physiol. 8, 547 (2017).

4. Nagaraja, M. P. & Risin, D. The current state of bone loss research: data from spaceflight and microgravity simulators. J. Cell Biochem. 114, 1001–1008 (2013).

5. Orwoll, E. S. et al. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit. J. Bone Min. Res. 28, 1243–1255 (2013).

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3