The effect of long-term spaceflight on drug potency and the risk of medication failure

Author:

Reichard J. F.ORCID,Phelps S. E.,Lehnhardt K. R.ORCID,Young M.,Easter B. D.ORCID

Abstract

AbstractPharmaceuticals selected for exploration space missions must remain stable and effective throughout mission timeframes. Although there have been six spaceflight drug stability studies, there has not been a comprehensive analytical analysis of these data. We sought to use these studies to quantify the rate of spaceflight drug degradation and the time-dependent probability of drug failure resulting from the loss of active pharmaceutical ingredient (API). Additionally, existing spaceflight drug stability studies were reviewed to identify research gaps to be addressed prior to exploration missions. Data were extracted from the six spaceflight studies to quantify API loss for 36 drug products with long-duration exposure to spaceflight. Medications stored for up to 2.4 years in low Earth orbit (LEO) exhibit a small increase in the rate of API loss with a corresponding increase in risk of product failure. Overall, the potency for all spaceflight-exposed medications remains within 10% of terrestrial lot-matched control with a ~1.5 increase in degradation rate. All existing studies of spaceflight drug stability have focused primarily on repackaged solid oral medications, which is important because non-protective repackaging is a well-established factor contributing to loss of drug potency. The factor most detrimental to drug stability appears to be nonprotective drug repackaging, based on premature failure of drug products in the terrestrial control group. The result of this study supports a critical need to evaluate the effects of current repackaging processes on drug shelf life, and to develop and validate suitable protective repackaging strategies that help assure the stability of medications throughout the full duration of exploration space missions.

Funder

NASA | Johnson Space Center

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)

Reference51 articles.

1. Drake, B. G., Baker, J. D., Hoffman, S. J., Landau, D. & Voels, S. A. In Human Exploration of Mars Design Reference Architecture 5.0, Addendum #2 (ed Drake, B. G. & Watts, K. D.) 17–66 (NASA Johnson Space Center, Houston, 2014). https://www.nasa.gov/sites/default/files/files/NASA-SP-2009-566-ADD2.pdf.

2. Patel, Z. S. et al. Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. NPJ Microgravity 6, 33 (2020).

3. Hanson, A. et al. A Model-Based Systems Engineering Approach to Exploration Medical System Development, IEEE, 2019).

4. Bajaj, S., Sakhuja, N. & Singla, D. Stability testing of pharmaceutical products. J. Appl. Pharm. Sci. 2012, 129–138 (2021).

5. Bokser, A. D. & O’Donnell, P. B. in Remington: Essentials of Pharmaceutics (ed Felton, L.) 37–49 (Pharmaceutical Press, London, 2013).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3